skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Aldo R. Boccaccini"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aldo R. Boccaccini (Ed.)
    Monolayer Doping (MLD) is a technique involving the fmmation of a self-assembled dopant-containing layer on the substrate. The dopant is subsequently incorporated into the substrate by annealing, fmming a diffused region. Following MLD, samples were capped with silicon dioxide and rapid the1mal annealed (RTA). In this work, gallium doping using MLD has been demonstrated. Gallium containing compound Tris (2,4 pentanedionato) gallium(III) was synthesized, and shown to be suitable for monolayer doping silicon subsa-ates and deposited thin film polysi!icon. Seconda1y ion mass spectroscopy (SIMS) and spreading resistance probe (SRP) measurements were performed to determine the dopant profiles and dopant elecu-ical activation. TI1ese results showed that a dose of l.6*1015 atoms/cm2 was received, and the gallium dopant produced a 0.2 µm junction in 11-type silicon. For polysilicon, tlle entire 0.4 µm film was evenly doped, witll a concenu-ation greater than 1019 atoms/cm3 tllroughout. 
    more » « less
  2. Aldo R. Boccaccini (Ed.)
    We report doping of thin (~60 nm) amorphous silicon (a-Si) on glass substrate to form n + polycrystalline silicon on glass in selective regions using Monolayer doping (MLD) via Flash Lamp Annealing (FLA). The phosphorus monolayer was formed on the exposed regions of SiO2 patterned a-Si, through functionalization with chemically bound Diethyl vinylphosphonate (DVP) dopant molecules. The samples were capped with SiO2 and annealed using a single xenon flash pulse (5.0 J/cm2, 250 μs) to simultaneously crystallize a-Si, incorporate and activate phosphorus dopants. SIMS results show an average concentration of 8x1019 cm−3 in the 60 nm of thin silicon on glass. Electrical results show a resistivity of ~6.60x10−2 Ω.cm in doped regions. N-channel field effect transistor devices are successfully demonstrated using this MLD-FLA technique. 
    more » « less